{"id":1793,"date":"2019-05-22T02:47:44","date_gmt":"2019-05-22T02:47:44","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-the-development-of-quantum-dots-from-definition-to-application\/"},"modified":"2020-05-04T13:12:06","modified_gmt":"2020-05-04T13:12:06","slug":"the-development-of-quantum-dots-from-definition-to-application","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/tanimdan-uygulamaya-kuantum-noktalarinin-gelistirilmesi\/","title":{"rendered":"Kuantum noktalar\u0131n\u0131n geli\u015fimi - tan\u0131mdan uygulamaya"},"content":{"rendered":"
\n
Nanoteknolojinin geli\u015fimi, son y\u0131llarda bilimsel ara\u015ft\u0131rmalarda \u00e7ok \u00f6nemli bir rol oynam\u0131\u015ft\u0131r. Sonsuz nanomalzemeler art\u0131k katalizden biyot\u0131bba kadar bir\u00e7ok alanda yayg\u0131n olarak kullan\u0131lmaktad\u0131r. \u00c7e\u015fitli nanomalzemeler aras\u0131nda kolloidal nanokristaller en \u00f6nemli dal malzemelerinden biri olabilir ve bir\u00e7ok alanda g\u00fc\u00e7l\u00fc uygulama beklentilerine sahiptir. Berkeley'deki California \u00dcniversitesi'nden Paul Alivisatos, nano alanda \u00e7\u0131\u011f\u0131r a\u00e7an bir\u00e7ok \u00e7al\u0131\u015fma yapt\u0131. \u00dcnl\u00fc dergi Nano Letters [1]'in a\u00e7\u0131l\u0131\u015f say\u0131s\u0131nda b\u00f6yle bir soru sordu: Neden b\u00f6yle belirli bir \u00f6l\u00e7ek aral\u0131\u011f\u0131 bir tane tan\u0131mlayabilir? Bilim ve bilimsel bir dergi? B\u00f6ylesine zorlay\u0131c\u0131 bir nanometre \u00f6l\u00e7e\u011finin \u00f6zel noktas\u0131 nedir? Burada, kuantum noktalar\u0131n\u0131n (Paul Alivisatos'un kuantum nokta malzemelerinin geli\u015ftirilmesinde \u00e7ok \u00f6nemli bir rol oynad\u0131\u011f\u0131 \u015fey) \u00e7e\u015fitli alanlardaki geli\u015fimini \u00f6zetleyerek bu sorunu \u00e7\u00f6zmeye \u00e7al\u0131\u015fmak i\u00e7in k\u00fc\u00e7\u00fck bir dipnot derledik.<\/div>\n

1. Tan\u0131m<\/h2>\n
Genel olarak, kolloidal nanokristaller, \u00e7\u00f6zelti i\u00e7inde yar\u0131 kararl\u0131 bir bi\u00e7imde 1-100 nm boyutuna sahip bir kristalin par\u00e7alar\u0131d\u0131r. Fiziksel boyutu ve bir\u00e7ok \u00f6zelli\u011fin kritik boyutu, \u00f6nemli y\u00fczey atomik oran\u0131 ve kolloidal nanokristallerin bir\u00e7ok \u00f6zelli\u011fi nedeniyle boyutla ilgili benzersiz bir fenomen g\u00f6sterir [3]. Geleneksel olarak, kolloidal nanokristaller esas olarak asil metal kolloidal nanokristaller ve yar\u0131 iletken koloidal nanokristaller olarak s\u0131n\u0131fland\u0131r\u0131l\u0131r. Klasik kuantum hapsi etkisine g\u00f6re, yar\u0131 iletken koloidal nanokristalin geometrik yar\u0131\u00e7ap\u0131, d\u00f6kme malzemenin eksiton Boole yar\u0131\u00e7ap\u0131ndan daha k\u00fc\u00e7\u00fck oldu\u011funda, de\u011ferlik band\u0131n\u0131n ve iletim band\u0131n\u0131n enerji seviyeleri ayr\u0131 bir da\u011f\u0131l\u0131m \u015feklinde g\u00f6r\u00fcnecektir. Boyutla ilgili olmal\u0131d\u0131r. Bu nedenle, klasik \u00e7al\u0131\u015fmalar, yar\u0131\u00e7ap boyutlar\u0131 eksiton Boer yar\u0131\u00e7ap\u0131ndan daha k\u00fc\u00e7\u00fck veya ona yak\u0131n olan yar\u0131 iletken nanokristallere kuantum noktalar\u0131 olarak at\u0131fta bulunmu\u015ftur.<\/div>\n

\"\"<\/p>\n

\u015eekil 1 Kuantum noktalar\u0131n\u0131n yap\u0131s\u0131 (y\u00fczey ve \u00e7ekirdek) [2]<\/div>\n

\"\"<\/p>\n

\u015eekil 2 monodispers CdSe nanokristallerinin TEM g\u00f6r\u00fcnt\u00fcs\u00fc [4]<\/div>\n
At the initial stage of development of quantum dots, research has focused on the field of metal chalcogenides. In 1993, MIT’s Bawendi group [4] injected organometallic compounds into high-temperature solvents, and the compounds were thermally decomposed and nucleated in solution to obtain metal chalcogenides such as cadmium selenide (CdSe) with good dispersibility. Nanocrystalline. These high-quality semiconductor nanocrystals have a diameter size distribution in the range of about 1 nm to 12 nm, have a uniform crystal structure, and exhibit size-dependent light emission and absorption characteristics. This is an early classic of the systematic study of quantum dots in the rapid development of semiconductor nanocrystal research. However, after decades of development research, the concept of quantum dots has also been extended from the original semiconductor nanocrystals, and nowadays, materials such as perovskite quantum dots, carbon quantum dots, and inorganic quantum dots without cadmium have become Research hotspots. Therefore, the application of these emerging materials will also be involved.<\/div>\n

2.Led<\/h2>\n

\"\"<\/p>\n

\u015eekil 3 QLED m\u00fcrekkep p\u00fcsk\u00fcrtmeli bask\u0131 [7]<\/div>\n
As early as 1994, P. Alivisatos et al. first combined CdSe quantum dots with semiconducting polymers for the manufacture of novel organic-inorganic hybrid electroluminescent diodes. By developing new assembly techniques, researchers have constructed multi-layer quantum dots that enable charge transport. The advantages of traditional bulk inorganic semiconductor diodes in thermal, chemical, and mechanical stability have also been retained [5]. However, the organic layer in these devices will have very low carrier mobility and nanocrystalline conductivity, which directly drags the efficiency of the photovoltaic device. By around 2006, S. J. Rosenthal [6] and others prepared an ultra-small CdSe nanocrystal as a white phosphor. The quantum dots are very uniform in size and large in specific surface area, which significantly increases the probability of electrons and holes interacting on the surface of the nanocrystals, so that the Stokes shift of the nanocrystals can reach 40-50 nm and exhibit broad spectrum emission in the visible region. Characteristics. The invention of this new white phosphor has greatly expanded the application prospects of quantum dot light-emitting diodes (QLEDs). In recent years, laboratory preparation of QLED prototype devices has gradually matured in design and mechanism research [7], and the promotion of industrial production of large-area RGB pixel arrays has also become a research hotspot. Nowadays, the development of patterning technologies such as inkjet printing and transfer printing has laid the foundation for the maturity of QLED’s large-area display technology, and has significantly promoted the commercial application of QLED.<\/div>\n

3. Ya\u015fayan g\u00f6r\u00fcnt\u00fcleme<\/h2>\n

\"\"<\/p>\n

\u015eekil 4 \u0130n vivo optik g\u00f6r\u00fcnt\u00fcleme i\u00e7in karbon noktalar\u0131 [11]<\/div>\n
Fluorescence is a tool that has a wide range of applications in the biological field. Compared with traditional fluorescent dyes, quantum dots have the characteristics of high emission brightness, large molar extinction coefficient, and broad absorption spectrum, and can be used as a substitute for fluorescent dyes or fluorescent proteins. P. Alivisatos et al. [8] used quantum dots for fibroblast labeling in 1998, which has opened up the application of quantum dots as fluorescent probes for biomedical imaging. Nie Shuming’s research team also made pioneering work in the field of imaging. The research team not only used the covalent coupling of zinc sulfide\/cadmium selenide core-shell quantum dots with biomacromolecules as early as 1998 to achieve ultra-sensitive non-isotopic tracing [9], they also realized for the first time in living animals. Tumor targeting and imaging studies [10] have developed diagnostic studies for quantum dot disease. Inorganic nanocrystals, especially cadmium-based nanocrystals, can cause toxic effects on organisms, so the synthesis of quantum dots with excellent biocompatibility has been a research hotspot. For example, research on synthetic copper-based or silver-based quantum dots can effectively reduce the biological toxicity of materials. In addition, the development of metal-free quantum dots is also an important strategy. The carbon dots synthesized by Ya-Ping Sun et al. still retain considerable fluorescence intensity after injection into mice [11]. In addition to toxicity, optimizing the emission region of quantum dots to better conform to near-infrared bio-optical windows is also a challenge for nanocrystalline medical applications.<\/div>\n

4.Kanser tedavisi<\/h2>\n

\"\"<\/p>\n

\u015eekil 5 Grafen kuantum noktalar\u0131n\u0131n singlet oksijen \u00fcretim mekanizmas\u0131 [13]<\/div>\n
Fotodinamik terapi art\u0131k FDA onayl\u0131 bir kanser tedavi program\u0131na d\u00f6n\u00fc\u015fm\u00fc\u015ft\u00fcr. Genel olarak, \u0131\u015f\u0131\u011fa duyarl\u0131la\u015ft\u0131r\u0131c\u0131 ila\u00e7lar, t\u00fcm\u00f6r h\u00fccrelerini \u00f6ld\u00fcren reaktif oksijen t\u00fcrleri \u00fcretmek i\u00e7in v\u00fccutta uyar\u0131l\u0131r. Bununla birlikte, \u0131\u015f\u0131\u011fa duyarl\u0131la\u015ft\u0131r\u0131c\u0131n\u0131n suda \u00e7\u00f6z\u00fcn\u00fcrl\u00fc\u011f\u00fc zay\u0131ft\u0131r ve v\u00fccutta birikme nedeniyle fotokimyasal aktiviteyi kaybetme e\u011filimindedir. 2003 y\u0131l\u0131nda, Burda ekibi [12] ilk olarak CdSe kuantum noktalar\u0131n\u0131n bir \u0131\u015f\u0131\u011fa duyarl\u0131la\u015ft\u0131r\u0131c\u0131 olarak geli\u015fme potansiyelini a\u00e7\u0131klad\u0131. Kuantum noktalar\u0131n\u0131n optik \u00f6zellikleri, enerjiyi verimli bir \u015fekilde aktaran g\u00fc\u00e7l\u00fc bir foton so\u011furucu oldu\u011funu ve y\u00fczey i\u015flevselle\u015ftirmesinin v\u00fccuttaki da\u011f\u0131l\u0131m\u0131 artt\u0131rd\u0131\u011f\u0131n\u0131 belirler. \u00c7in Bilimler Akademisi Fizik ve Kimya Enstit\u00fcs\u00fc'nden Wang Pengfei ve Hong Kong \u015eehir \u00dcniversitesi'nden Wenjun Zhang'\u0131n ortak ekibi [13] toksisite sorununu \u00e7\u00f6zmek i\u00e7in grafen kuantum noktalar\u0131n\u0131n verimli bir \u015fekilde singlet \u00fcretebildi\u011fini buldu. oksijen ve t\u00fcm\u00f6rleri \u00f6ld\u00fcrmek i\u00e7in canl\u0131 t\u00fcm\u00f6rler \u00fczerinde hareket eder. Ek olarak, son ara\u015ft\u0131rmalar, kuantum nokta materyallerini t\u00fcm\u00f6r fototermal tedavisi ve radyasyon tedavisinin uygulanmas\u0131na geni\u015fletti.<\/div>\n

5.Yapay fotosentez<\/h2>\n

\"\"<\/p>\n

\u015eekil 6 Yapay fotosentez alan\u0131nda kuantum noktalar\u0131n\u0131n uygulama avantajlar\u0131 [14]<\/div>\n
Kuantum hapsi etkisine g\u00f6re, kuantum noktalar\u0131n\u0131n bant aral\u0131\u011f\u0131, uygun bir y\u00f6ntemle yapay olarak ayarlanabilir, b\u00f6ylece kuantum noktalar\u0131n\u0131n absorpsiyon emisyon b\u00f6lgesi, kar\u015f\u0131l\u0131k gelen toplu malzemeler ve molek\u00fcler ile kar\u015f\u0131la\u015ft\u0131r\u0131ld\u0131\u011f\u0131nda t\u00fcm g\u00f6r\u00fcn\u00fcr \u0131\u015f\u0131k spektral aral\u0131\u011f\u0131n\u0131 kapsayabilir. boyalar. Ayr\u0131ca, kuantum noktalar\u0131n\u0131n eksiton \u00fcretimi ve y\u00fck ay\u0131rma etkileri daha kontrol edilebilir oldu\u011fundan, kuantum noktalar\u0131n\u0131n kataliz alan\u0131nda uygulanmas\u0131 da \u00e7ok \u00f6nemli bir konudur. 1980'lerde, kuantum noktalar\u0131n\u0131n platin veya rutenyum oksit [15] ve di\u011fer promot\u00f6rlere modifikasyonu \u00fczerine yap\u0131lan ara\u015ft\u0131rmalar hidrolizi katalize edebilir. O zamandan beri, ara\u015ft\u0131rmac\u0131lar kuantum nokta tabanl\u0131 yapay fotosentez olu\u015fturmak ve performans\u0131n\u0131 s\u00fcrekli olarak optimize etmek i\u00e7in \u00e7al\u0131\u015f\u0131yorlar. 2012 y\u0131l\u0131nda kuantum nokta katalitik sistemlerin fotokatalitik hidrojen \u00fcretiminde \u00f6nemli bir at\u0131l\u0131m yap\u0131ld\u0131. Krauss et al. [16], CdSe kuantum noktalar\u0131n\u0131n lipoik asit ile kaplanmas\u0131ndan sonra, kuantum noktalar\u0131n\u0131n, hibrit bir katalitik sistem olu\u015fturmak i\u00e7in nikel iyon-lipoik asit sistemine kolayca ba\u011fland\u0131\u011f\u0131n\u0131 buldu. G\u00f6r\u00fcn\u00fcr \u0131\u015f\u0131k \u0131\u015f\u0131mas\u0131 alt\u0131nda, bu sistem aktif hidrojen \u00fcretimini en az 360 saat (36%'ye kadar kuantum verimi) s\u00fcrd\u00fcrebilir ve bu da de\u011ferli olmayan metal kataliz\u00f6rlerin uygulama beklentilerini b\u00fcy\u00fck \u00f6l\u00e7\u00fcde iyile\u015ftirir. \u015eimdiye kadar, onlarca y\u0131ll\u0131k yapay fotosentez sistemlerinin geli\u015ftirilmesinden sonra, seri \u00fcretim ve b\u00fcy\u00fck \u00f6l\u00e7ekli kullan\u0131m\u0131 ke\u015ffetme a\u015famas\u0131na girdikten sonra, kuantum noktalar\u0131, sat\u0131n alma kayna\u011f\u0131 ve \u00fcretim maliyeti a\u00e7\u0131s\u0131ndan de\u011ferli metallere g\u00f6re avantajlar sa\u011flad\u0131, ancak kadmiyum i\u00e7ermeyen geli\u015fimin geli\u015ftirilmesi. \u00e7evre dostu ve g\u00f6r\u00fcn\u00fcr \u0131\u015f\u0131\u011fa duyarl\u0131 kuantum noktalar\u0131 (\u00e7inko selenit kuantum noktalar\u0131 gibi), yeni enerji d\u00f6n\u00fc\u015f\u00fcm sistemlerinin uygulanmas\u0131 i\u00e7in bir zorluk olmaya devam ediyor.<\/div>\n

6.Perovskit kuantum noktas\u0131<\/h2>\n

\"\"<\/p>\n

\u015eekil 7 Bizmut-kur\u015funlu halojen\u00fcr perovskit kuantum noktalar\u0131n\u0131n yap\u0131s\u0131 ve \u00f6zellikleri [17]<\/div>\n
So far, metal sulfide nanocrystals are the best-developed and most in-depth quantum dot materials, and they have the widest range of applications. In the past five years, quantum dots with a crystal structure of perovskite have become an emerging research hotspot. This new type of quantum dot is no longer a metal sulfide. Instead, it is a metal halide. A metal halide with a perovskite structure exhibits unique properties such as superconductivity and ferroelectric properties that are not available in conventional quantum dots. The earliest organic-inorganic hybrid perovskite nanocrystals have the disadvantage of being extremely sensitive to environmental factors such as oxygen and humidity, which limits the development of this material. Almost at the same time, Kovalenko’s research group [17] pioneered the preparation of all-inorganic bismuth-lead halide perovskite quantum dots in 2014. This colloidal quantum dot has a cubic perovskite crystal structure, while the exciton Bohr radius It does not exceed 12 nm and therefore exhibits dimensionally related spectral properties. This emerging material combines the advantages of quantum dots and perovskite materials to extend the potential applications of quantum dots. In the past year or two, perovskite quantum dots have not only been used in photovoltaic cells and optoelectronic display devices, but have not yet been manufactured. New laser materials [18] offer new strategies.<\/div>\n

7. \u00d6zet<\/h2>\n
Quantum dots are representative materials for explaining the “size effect” of so-called nanomaterials. They have been applied more widely in more and more fields, from optoelectronic devices to photocatalysis to biodetection, covering almost the present and Future daily needs. However, due to space limitations, many quantum dot family member materials such as silicon quantum dots have not been mentioned, and the introduction of material applications has remained in representative research. By summarizing these classic research paradigms, it is expected that the development of quantum dots can be summarized to some extent.<\/div>\n
Referanslar<\/div>\n
Nano Letters'a ho\u015f geldiniz. Nano Harfler. 2001, 1, 1.<\/div>\n
\uf0a7 R. Kagan, E. Lifshitz, EH Sargent, et al. Kolloidal kuantum noktalar\u0131ndan cihazlar in\u015fa etmek. Bilim. 2016, 353(6302), aac5523.<\/div>\n
\uf0a7 Peng. Kolloidal Nanokristallerin Sentetik Kimyas\u0131 \u00dczerine Bir Deneme. Nano Ara\u015ft\u0131rma. 2009, 2, 425-447.<\/div>\n
\uf0a7 B. Murray, DJ Norris, MG Bawendi. Neredeyse Monodispers CdE(E = S, Se, Te) Yar\u0131 \u0130letken Nanokristallerin Sentezi ve Karakterizasyonu. J. Am. Kimya Soc. 1993, 115, 8706-8715.<\/div>\n
\uf0a7 L. Colvin, MC Schlamp, AP Alivisatos. Kadmiyum selenit nanokristallerinden ve yar\u0131 iletken polimer Nature'dan yap\u0131lm\u0131\u015f \u0131\u015f\u0131k yayan diyotlar. 1994, 370, 354-357.<\/div>\n
\uf0a7 J. Bowers, JR McBride, SJ Rosenthal. Sihirli Boyutlu Kadmiyum Selenid Nanokristallerinden Beyaz I\u015f\u0131k Emisyonu. J. Am. Kimya Soc. 2006, 127, 15378-15379.<\/div>\n
\uf0a7 Dai, Y. Deng, X. Peng, et al. Geni\u015f Alanl\u0131 Ekranlar i\u00e7in Kuantum Nokta I\u015f\u0131k Yayan Diyotlar: Ticarile\u015fmenin \u015eafa\u011fa Do\u011fru. Geli\u015fmi\u015f Malzemeler, 2017, 29, 1607022.<\/div>\n
\uf0a7 Bruchez, M. Moronne, P. Gin, et al. Floresan Biyolojik Etiketler olarak Yar\u0131 \u0130letken Nanokristaller. Bilim 1998, 281, 2013-2016.<\/div>\n
\uf0a7 CW Chan, S. Nie. Ultra Hassas \u0130zotopik Olmayan Tespit i\u00e7in Kuantum Nokta Biyokonjugatlar\u0131. Bilim, 1998, 281, 2016-2018.<\/div>\n
\uf0a7 Gao, Y. Cui, RM Levenson, et al. Yar\u0131 iletken kuantum noktalar\u0131yla in vivo kanser hedefleme ve g\u00f6r\u00fcnt\u00fcleme. Nat. Biotech., 2004, 22, 969-976.<\/div>\n
\uf0a7 ST. Yang, L. Cao, PG Luo, et al. Vivo'da Optik G\u00f6r\u00fcnt\u00fcleme i\u00e7in Karbon Noktalar\u0131. Ben. Kimya Soc. 2009, 131, 11308-11309.<\/div>\n
\uf0a7 CS Samia, X. Chen, C. Burda. Fotodinamik Terapi i\u00e7in Yar\u0131 \u0130letken Kuantum Noktalar\u0131. J. Am. Kimya Soc., 2003, 125, 15736-15737.<\/div>\n
\uf0a7 Ge, M. Lan, B. Zhou ve ark. Y\u00fcksek singlet oksijen \u00fcretimine sahip bir grafen kuantum nokta fotodinamik terapi ajan\u0131. Nat. Kom\u00fcn. 2014, 5, 4596.<\/div>\n
\uf0a7 XB. Li, CH. Tung, LZ. Wu. Yapay fotosentez i\u00e7in yar\u0131 iletken kuantum noktalar\u0131. Rev. Kimya 2018, 2, 160-173.<\/div>\n
\uf0a7 Kalyanasundaram, E. Borgarello, D. Duonghong, et al. Kolloidal CdS \u00c7\u00f6zeltilerinin G\u00f6r\u00fcn\u00fcr I\u015f\u0131k I\u015f\u0131nlamas\u0131 ile Suyun B\u00f6l\u00fcnmesi; RuO2 ile Fotokorozyonun Engellenmesi. Ange. Kimya Int. Ed. 1981, 20.<\/div>\n
\uf0a7 Han, F. Qiu, R. Eisenberg, et al. Yar\u0131 \u0130letken Nanokristaller ve Nikel Kataliz\u00f6r Kullanarak Suda H2'nin Sa\u011flam Fotojenerasyonu. Bilim 2012, 338, 1321-1324.<\/div>\n
\uf0a7 Protesescu, S. Yakunin, MI Bodnarchuk, et al. Sezyum Kur\u015fun Halide Perovskitlerin Nanokristalleri (CsPbX3, X = Cl, Br ve I): Geni\u015f Renk Gam\u0131 ile Parlak Emisyon G\u00f6steren Yeni Optoelektronik Malzeme. Nano Lett. 2015, 15, 3692-3696.<\/div>\n
\uf0a7 Wang, X. Li, J. Song, et al. T\u00fcm\u00fcyle \u0130norganik Kolloidal Perovskite Kuantum Noktalar\u0131: Uygun Karakteristiklere Sahip Yeni Bir Lazer Malzemesi S\u0131n\u0131f\u0131. Geli\u015fmi\u015f Malzemeler, 2015, 27, 7101-7108.<\/div>\n<\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

The development of nanotechnology has played a crucial role in scientific research in recent decades. The endless nanomaterials are now widely used in many fields from catalysis to biomedicine. Among various nanomaterials, colloidal nanocrystals may be one of the most important branch materials, and it has strong application prospects in many fields. Paul Alivisatos of…<\/p>","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"jetpack_featured_media_url":"","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/1793"}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=1793"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/1793\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=1793"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=1793"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=1793"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}