色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

End mills are one of the most crucial cutting tools in CNC milling operations, widely employed in various fields such as mold manufacturing, component machining, aerospace, and automotive manufacturing. They are key to achieving efficient and high-precision processing.

?Names of the Various Parts of an End Mill

Names of the various parts of an end mill:

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 2 How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 3 How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 4

Structural Types of End Mills

Classified by the Number of Cutting Edges:

The cylindrical surface and end face of an 立銑刀 usually have cutting edges distributed on them, which can engage in cutting simultaneously or individually. Based on the number of blades, end mills can be categorized into double-edge, triple-edge, quadruple-edge, and multi-edge types.

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 5

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 6

The fewer the number of blades, the larger the chip flute, but the worse the rigidity.

Comparison of the advantages and disadvantages of end mills with different numbers of blades:

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 7

According to the type of bottom end tooth shape

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 8

According to the shape of the cutting edge

General-purpose end mill

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 9

Widely used, applicable to slot machining, side machining, and step surface machining, etc. In addition, it can be used in all situations of rough machining, semi-finishing, and finishing.

Tapered end millHow to Choose the Perfect End Mill: Master Machining with These Pro Tips! 10

Used for conical surface machining after general cutting, such as mold draft angle machining and concave portion machining, etc.

Gear-type end mill

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 11

The cutting edge is wavy, producing fine chips, with low cutting force, suitable for rough machining, not suitable for finish machining.

Forming end mill

Milling cutter for machining external R shapes
Milling cutter for machining external R shapes

A forming blade is a cutting edge that is shaped to match the contours of the workpiece being machined. Special shapes typically need to be custom-made based on the product’s shape and dimensions.

According to the blade arrangement of end mills

Indexable spiral fluted end mill
Indexable spiral fluted end mill

 

Indexable spiral cutting edge end mill
Indexable spiral cutting edge end mill

 

By tool material

End mills can be classified by material into: high-speed steel, solid carbide, carbide with coating, CNB, PCD, etc.

?

Key Points for Selecting End Mills

When using an end mill, multiple factors need to be considered to ensure machining efficiency, precision, and tool life. Here are some key considerations:

① Material of the workpiece: Different materials (such as steel, cast iron, aluminum alloy, plastic, composite materials, etc.) require tools with different characteristics. For example, when machining aluminum alloy, a specialized aluminum end mill can be chosen, which typically has good chip evacuation and heat resistance; when machining high-hardness materials, a carbide tool with a high-wear-resistant coating should be selected.

② Machining form and precision requirements: Choose the shape and number of cutting edges based on the shape of the machining surface (plane, slot, contour, etc.) and the required surface roughness. For instance, a ball nose end mill is suitable for complex surface machining, while a flat or rounded end mill is suitable for plane and edge machining. For high-precision machining, choose an end mill with higher arc precision.

③ Helix angle of the end mill: The helix angle affects cutting efficiency and tool life. When machining materials with poor thermal conductivity (such as stainless steel), a large helix angle can improve chip evacuation and heat dissipation, extending tool life. For thin-walled workpieces or machining with poor rigidity, a small helix angle can reduce cutting forces and avoid workpiece deformation.

End mills with different helix angles
End mills with different helix angles

How to Choose the Perfect End Mill: Master Machining with These Pro Tips! 12

 

 

④ Tool material and coating: Carbide is the most commonly used tool material. For different working conditions, selecting the appropriate carbide grade and coating (such as TiCN, TiAlN, etc.) can enhance tool performance. High-speed steel (HSS) is suitable for low-speed and low-hardness material machining, while carbide is more suitable for high-speed and high-hardness material machining.

⑤ Tool structure: Solid, brazed, and indexable tools each have their advantages. Solid tools have good rigidity and are suitable for precision machining; brazed and indexable tools are convenient for blade replacement and are suitable for mass production.

⑥ Number of flutes and shank structure: The number of flutes affects the tool rigidity and chip flute size. When the workpiece rigidity is low, it is advisable to choose a tool with fewer flutes to improve chip evacuation; the shank design (standard, long neck, tapered neck) needs to be selected based on the machining depth and workpiece shape. Tapered neck end mills provide better rigidity and machining accuracy.

Long Neck Tapered End Mill
Long Neck Tapered End Mill

 

⑦ Tool length: Under the condition of meeting the machining requirements, choose the shortest tool length as much as possible to increase stability, reduce vibration, and thereby improve the quality of machining.

⑧ Cost-effectiveness: Consider the tool cost and machining efficiency comprehensively and choose a cost-effective solution.

In summary, the selection of end mills is a process of comprehensive consideration, involving workpiece material, machining requirements, tool performance, cost-effectiveness, and other aspects. Correct selection can greatly improve machining efficiency, reduce costs, and ensure machining quality.

 

 

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標注

91精品国产成人一区二区-白丝老师好紧好爽好湿作文-国产成人久久流白浆图-丰满少妇猛烈进出高清晰视频| 平远县| 少妇老师疯狂放荡叫床视频-国产精品最新不卡在线-婷婷六月久久综合丁香-国产精品超大屁股老淑女| 汪清县| 国产一区二区三区av福利-日本人妻乱交中文字幕-欧美日韩欧美在线免费观看-疯狂放荡的少妇免费观看| 国产精品亚洲欧美日韩久久-深夜av免费在线观看-亚洲熟妇中文字幕五十中出-国产精品一区二区成人久久| 涿州市| 崇信县| 兴和县| 久久久精品熟女亚洲av麻豆-亚洲精品色在线观看视频-av熟女丝袜一区二区三区四区-日韩一卡二卡三卡av| 全州县| 礼泉县| 国产欧美日韩中文久久-一区二区三区少妇熟女高潮-99久久婷婷国产综合亚洲-国产露出精品一区二区三区91| 亚洲天堂精品在线观看-久久精品国产亚洲av熟女-国产伦精品二区三区在线观看-美女人妻少妇一区二区三区| 霍州市| 镶黄旗| 克东县| 少妇老师疯狂放荡叫床视频-国产精品最新不卡在线-婷婷六月久久综合丁香-国产精品超大屁股老淑女| 曲靖市| 庆元县| 卢龙县| 新蔡县| 玩弄漂亮少妇高潮正在播放-亚洲宅女午夜福利视频-丰满少妇粗大猛烈进高清播放-黄色亚洲精品大全在线观看| 铁岭市| 泊头市| 贺州市| 新源县| 天天日天天射天天好逼-精品露脸贵在真实在线播放-人妻熟妇乱又伦精品视频少妇-国产精品av在线观看免费| 日本中文字幕人妻精品-久久一区国产好爽高潮毛片-五月天丁香婷婷视频在线观看-91福利共享久久精品| 国产无遮挡又爽又色又刺激-一区二区在线亚洲精品观看-亚洲av先锋一区二区三区-av在线国产一区二区三区| 黄大仙区| av在线免费观看免费-亚洲成av人片一区二区三区-国产裸体露出视频在线观看-亚洲精品成人久久久影院| 哈巴河县| 亚洲欧美精品中文字幕乱码-欧美丰满肥臀大屁股熟妇激情-97人妻精品一区二区三区久久久-亚洲国产永久精品成人麻豆| 亚洲熟妇少妇一区二区三区-污污污十八禁在线观看-国产一区二区三区毛片av-伊人久久综合免费观看完整版| 望谟县| 黄色av免费在线观看亚洲-国产成人精品一区二区三区免费-国产av大全一区二区三区-国产精品一区二区av白丝在线| 武胜县| 女厕偷窥一区二区三区在线-五月婷婷伊人中文字幕-一个人免费完整视频高清-中文字幕人妻在线一区二区三区| 熟妇人妻无乱码中文字幕麻-中文字幕在线中文乱码怎么解决-av成人久久精品一区二区-国产精品人妻熟女av久久网址| 国产精品成人亚洲一区二区-亚洲国产成人精品久久一区二区-久久精品国产亚洲阿v-91麻豆精品激情在线观看最新|